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Wave Propagation in Laterally Varying Media: A Modal Expansion Method
by

Charles B. Archambeau

Zonal Partitioning and Green’s Function Representations

Consider a two dimensionally varying elastic-anelastic medium, as indicated in Figure 1.
In each zone V4, o= 1,2, - - - M. the medium varies in the vertical direction (z), but is uniform in
the horizontal directior (y or p). The supposition is that the laterally varying medium can be
approximated by a serics of step variations in material properties in the same way as is done 1n

the vertical direction.

In V, we have for he frequency domain displacement field (®u at any point r within V:

.
@y (r, 0) = ;}n—& '[:, [t,(ro)‘“’G,‘(r. Fos ©) = uy(ro)@gi(r, ro; w){da, (1
+

-1

where (G} and (9g are the zonal displacement and traction Greens’ functions appropriate for
the zone or region V,.* The vertical boundary surfaces of V, are £, and L., as indicated in
Figure 1. Here we assume no sources in::de V4 and that the Green’s functions satisfy all inter-
nal boundary conditions on all horizontal layers in V4. (In this case there are no surface
integrals over inte) 1al boundaries in (1)). Green’s functions in V4 can be written 1n .erms of the

eigenvalues ko and eigenfunctions (hy for this zone as ** :

Summation over repeated coordinate indices 13 used throughout. Coordinate ind'ces will appear as lower case Latin sub-
scnipts and superscripts. The summation convention does not apply to any indices appearing in parenthesis.

Throughout this development the “sum” over the eigenvalues K will be written as a discrete summation but it should
be understood that (n an unbounded medium, such as a layered half space. part of the wave number spectrum wiil be con-
tinuous In this case the “sum” over Ky must be interpreted as & generalized summation nvolving & regular sum over the
disc. ie part of the spectrum plus an integration ¢ er the continuous part of the wave number spectrum
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Figure I. Zonal partitioning of a vertically and laterally

varying medium into subregions of uniform
horizontal layering.




_ @y (ro, ka) @wi(r, kg)
) ) - Wj o Ra i a
@G(r, ro; @) 47tmz‘;,‘x Nolka, ©) @

where (")\TJi is the complex conjugate of (®y, and Ny is a normalizaton constant which may be a
function of frequency w and the wave number kq. Since the (v, are eigenfunctions for the
region Vg, this Green's function satisfies all boundary conditions along the horizontal boun-

daries in V,. (For details see Harvey, 1983.)

Further, since:

0AGi(r, ry; o)

(a)gji(r; Io; @) = nf°) CIS?P n oxf©

where n§? is the surface normal to £, and Z,.; and x{©) are source coordinate variables, then

(Dgi(p: 1. @) = b l . I
gi(r; Toy ©) 47t"§l No(kq, @) )

Here m is the angular index for cylindncal coordinates, k, the horizontal wave number

corresponding to the modes in V, and where:

(a)qu(rw kq) = nf® CISJ% azlo [(a)\l’n(ro’ ka] (4)

Because of the horizontal layering 1n Vg, the eigenfunctions (D, and (W, are defined sec-

]ZN

J 1

tionally, that is:

@y, -.-.{(“)WJ(S)(z) z.1S282

with (s) the honzontal layer index 1n V.

For the honzontally layered region V, we have that:

(@G = (WG 4 (G2
J R L™ (5)
(gt= (QRg} + \Pgj

3




Here (9Gj ard (P'Gf are the Rayleigh and Love type Green’s displacement funct.ons (with simi-

lar names for the associated Green's tractions) and whe:e

1

. - (?W (l' ’ rk ) ('?‘V (r\ LN )

@GHr, r; @) =dn Y, 1 > &R)((:ka. . ‘a) |
@OW (ro, k) DY(Fon 1ka) (©)
NP ke, @)

@Gi(r, ro; ) =4n Y
My K

J

with rkq and 1k, representing the Rayleigh and Love type mode eig nvalues. Likewis

|
@p (
o rsor=in T
R! ) \
- )
(“)‘-P(r .1k )(d)w.(r‘ k) (
Qg s Yo 4 L2JVo o/ L Y1 o
DRI(r, ¥or ) = um%a e

In cylindrical coordinates (p, ¢, z), the eigenfunctions are (see, for example, Harvey, 1981,

N

(?W(r' skq) = (@ Dy(z; rkq) P(rkgp. ¢)
+ O (z; nke) Btkap. 0)|

@W(r, rke) = @R (z: wka) Pro(rkap §) ®)
+ (G)Sm(z, RKq) Br(rkq P, 0)

My(rke) = @OF (2 tke) Cultkap, §)

@(r, 1k,) = @OT (2 1ka)Crn(tkap 9) )
Here: P, B and C are the vector cylindncal harmonics defined as:
}
Pn(kp, ¢) = Asz(kp)elmd’ - !
Bu(kp.9) = |&, Bfgp— + & T(—IEJ B%J Ju(kp)eme | '} (10)

Cm(kpv b)) = ép 'lkl— —()% - e@ .().(ga} kp)exm@l
|

where




In(kp) = Hi (k) + HEP (kp)

with Jp, the cylindrical Bessel function and H{" and H{® the cylindrical Hankel functions.
These vector functions are clearly such that Pp'Bp=PpyCp=B'Cry =0 and also have the
usual functional orthogonality. (e.g. Stratton 1941, Morse and Feshbach, 1953). Here &, &, and
éy are the unit vectors in cylindrical coordinates. The various “stress-displacement” functions
(@D, DEq, @Ry, -+ (@T, in (8) are the same as those usually appearing in the ordinary
developments for a laterally homogeneous layered half space -- such as described in Harkrider

(1964), Ben Menahem and Singh (1972), or Harvey (1981).

Similar representations for the eigenfunctions can be given in cartesian and spherical coor-
dinates. (In the latter case the eigenfunctions ry and cy are usually termed spheroidal and tor-
sional; and P, B and C become vector spherical harmonics). The choice of cylindrical coordi-
nates imphes rotational symmetry, that is that the medium is partitioned into zones V4 which are
cylindrical shells, with Figure 1 depicting a cross section at fixed ¢. If cartesian coordinates are
used, then Figure 1 represents a cross section at constant y, with properties constant in the ty
directions. In the development that immediately follows cylindnical coordinates will be used;
however the cartesian and sphenical representations are also appropnate and the development

and results are analogous to those for the cylindrical choice.

"Forward" and "Backward Propagating" Mode Expansions

In addition to the eigenfunction expansions of the Green’s functions in Vg, we can also
expand the displacements and tractions, appearing in (1) in terms of eigenfunctions in V4. In
particular, ) (r;) and (Dt (r,) may be expanded in terms of "forward" and "backward" pro-

pagating modes as:




h!

@yi(r,, ) = @ulD(r,, @) + @u)(r,, ©) "
(@, @) = @{(r,, ) + @O(r,, ) ty

where the superscripts (1) and (2) denote modes propagating in the positive and negative radial

(p) directions. Specifically,

)

(@y(r,, 0) = p) [(a)a Dk (@yf(r,, k)~ @Q @l (ahy Dy, k:,)}
m’', ke

12
Oy 0)m 3 @0 KOO ki) + @ D) e k)] [P
' ke

where

PN (D2 K2) PP + VB2 KIBIP + Oz ) ) o
13
@OPE)(r,, kq) = [‘“’R m(Zor Kg) PP + @18 .(z1 ko) BEP + T (241 kg) C,‘&’] eim¢

with
PP =& HiPkep) i p=1,2
..'- ) . | im’
B,W)-— CP a(k&p)"‘e.[k&p]

Cip=¢ {-ﬁ%} -& —%;;5] Hr‘fi”(kézp)é

J

HéP’(k&p)? (14)

The coefficients (¥a ,ﬁf ) (kg) are to be determined from boundary conditions at L, and Z,.,,
these conditions bring the continuity of displacement and traction on these surfaces. On the
other hand, of course, all the functions (¥D{P, ‘CEP), (AFP), (DR P (@SP) and @T (P are
known functions of the coordinate variables and the intrinsic matenal properties of t! : internal
horizontal layers, since they are provided by the usuai one-dimensional propagator approach 1n a

layered half space (e.g.. Harvey, [981). The exphcit forms of the functions are included tn the




Appendix 1.
Given that G} and g} in (1) can be split into Rayleigh and Love type Green’s functions, as
defined in (5)-(9). then it follows that (®y; can also be split into modal sums involving only (P,

and @y;. Therefore:

("’u,- = t(a)uj(p) = 2 [“,’.’u,") + “’,‘,’u,‘”] (15)
pal p=l 4
where
Eaur = L (9086 Qv+ 9a (k)
pe! m', pka
(16)
E“{’u,"’(ro. W= z [“t’a M ko) Py 4 (g @k (cng)}
pui m .1 ka
with
(DyP)(r,, ka) = {“"Dm«(zo L RKQ)PP + DE (2, : rkg) B,SP’} eim'¢
(@ (g, 1kq) = @F (2, ; tkq) CHP &™* (17

A simular decomp: sition applies 1o the uaction (%)t

It is importart to note that the eigenfunctions used to expand the Green’s functions in equa-
tions (2) - (7) are appropnate for the horizontally layered zone in V, and are themselves normal-

ized such that:

< QyP(ka), QuPlky)> = J Dy PUkar) DYPUkar)AV = S(kq ~kq) S8

(19)
<@yP(ky), PyP> = j DyP(kar) PyPkar)dV = Blkg —k)08

where (“’ﬁ;, denotes the complex conjugate of (Yy, and the nght hand side involves the usual

~3




delta functions. Therefore the nommalization factors appearing in the Green’s function expan-
sions are free parameters that may be chosen so as to appropnately normahze the zonal Green’s

functionsinVg, a=12,--- M.

To obtain the appropriate normalization factors for (9G} and (G} and, in additon. to
express these Green’s functions in forms that are convenient for use with the expanded form for
(")uj in (15)-(16), it is useful to adopt an expansion form for the Green’s functions that 1s similar
to that for (®y; in (15). That is, using both My and @y @ in the expansion for (UG}, we
express the Green'’s functions as:

@G} (r, ros @) = QG + QG
DG} (v, ro; @) = @GV + @GP 20

where:

(«p@(m(r , vk ) @Dy P(r, rkq)
(aG P) =4 ) o L ! a
R) lS nm%ko RN;Sa)(ka‘ o)

@yP(r,, 1kg) PyP(r, k)
(a)G )__._4 I.WJ 0 a/ L Y1 a
L l&p nm& LNéa)(ka’ o)

\
!
f (21)
|

<

and similarly for (Qg{ and (g, the Green’s tractions.

Orthogonality and Normalization Relations for Zonal Eigenfunctions

We can use (15)-(16) in (1) and also substitute (20)-(21) into this representation 1ntegral.
Since the representation given by (1) should be of the form of the expansion in (15), we should
obtain by proper choice of the normalization factors, kN and | N§®, exactly the expansion
given 1n (15) in terms of forward and backward propagating modes. In particular, from (1) we

have:

@y, (r, w) = Qu, (r, ©) + Qu, (r, 0) (22)




with

1

ity (PG} - ry, (",‘()g,'] da, ;reV,

{

Pui(r, ) = IJL-:

R |

-

F (23)
@y (r, w) = L tfy, PG} -y, (‘{)g;] da, ;reVq
Lﬂ' -1
Introducing the explicit eigenfunction expansions from (15)-(16) and (20)-(21), we get:
Qu(r, @) = T Duo(r, o) 24)
p=l

@QuPr, 0)= Y, DAy kky) X {R—‘—} {<<%>\P,<P>(akax QD (ka)>g, ol

m’,gKa m.rKa Néa) (ka, @)

- < (?z)\ll,(p)(kk&), (%)TJ(I)(Rka)>a. a—l}(?{)%“)(n Rka) + {< ((I?\PJ(P)(Rk(,l)v (?\Vj(z)(kka)>a. a-1

- <QuP (xka), Q¥ ko), a-l} R, ka)] (25)
Here terms of the form:

<yyka). )k, a1 & <Yytke): X,(ka)>a + <Yy(Ka), X (Ka)> a1

are introduced, where the 1nner product 1s defined over the surface X, (or £,.) as:
<vjka). %y(ka)> = i\l!,(l'o, Ke)%(For ka)da

with summation over the repeated coordinate index (j) implied. An exactly analogous result

holds for Luj; with the suffix "R" replaced by "L" in (24) and (25).

Comparing (25) with the equivalent expressions in (15) - (16), it 1s clear that the inner pro-
ducts appeanng in (25) must reduce to Jelta functions over the angular index m and the mode

eigenvalues k4. In particular, the following orthogonality conditions apply*:
:-;/h‘ere it 15 obvious from context, the R and L identifying subscripts on the wave numbers Rka and Lka will be
suppressed in order to reduce clutter in the equations.

9



<@QYPU(k) Dy P(ke)>p - <Py PU(ky), ¥ P(ke)>p

=l [‘?J‘P@Mkaro) - @yPkgr,) = @yPi(kar,) - <%2‘T*P>(karo)} da, (26)

= 1 [PiPkepy) - PiPkapp) + BiP(kipg) BPlkapp) | 81588
with f=a,a -1 and p=1,2 and where ng = 2npg. (l'ere pg 1s the constant value of the radial
coordinate on the surface Xg.) In addition,

<@¥P (k3) . Quka) >~ <QuP(k;), Q¥ (ka)>p =
(27)

i [(?‘P,‘P)(karo) - QYIkaro) = Ry Plicaro) <?2‘T‘q><karo>} da,: 0

for B=a, o~ 1 and p#q. Formally identical relations hold for the eigenfunctions (Py(P and
are obtained by replacing the suffix "R" by "L" in (26) and (27). Here we observe that the for-
ward and backward propagating modes are completely orthogonal sets. These conditions are
equivalent to those obtained by Herrera (1964) and McGarr and Alspp (1967) and were used by
Kennett (1983) in his development of a formalism for wave propagation 1n laterally varying

media. In more explicit form, equations (26) and (27) are equivalent to:

! [@Rm(zo + ki) @Bi(z6 : k) = @Dn(zo : ka) @Ralzo : ko) dzo = B

——

‘( [“"Sm(zo s ka) DE(2o : Ke) = @E(2o 5 kg) @81z, 5 ko |z, = B

4

where the subscript "R" on the P-SV wave number has also been suppressed n these expres-

sions. For the SH modes the analogous orthogonality relation 1s easily seen to be

t[[("‘)Tm(z(, K OE (20 5 Kg) = DOF (20 K OT (2, ; lca)?dz0 =9

10



where the wave numbers and kg and k; now refer to the SH wave number set (k. The "vertical
eigenfunctions” in V are those defined in (13) and are simple expontials in z,. (See Harvey,

1981.) Here also we consider the k, to be discrete infinite sets, so that orthogonality is expressed
by the Kronecker delta §,.

Using these orthogonality relations in (25) gives:
(
|

(?l)um(l' W)= Z ‘Ra m(ka) "na {P&l’)(kapa) p&l) (kapa) + B (kapq) - Bml)(kapa)}

mka[ Nf°><ka. @ |

(?Wj(n(rv ka)

+ na-,{ Pl (kepa-i) - PP(KkgPan) + BP(kapani) - Es,”(kapa-l)}

\

So

@u)(r, ) = E @gq (1 (ka) Dy N(r, ko)

provided we take:

i
RN, @ = tna {P,s,n (kaPa) * P(KaPa) + BED (kopa) - ﬁ&"(kapa)}

(28)
+ na-l{Prs\l AkaPgo1) * .pngnl)(kapa-l) + Br‘ul)(kapa-l)m)(kapa-l) }}

Similarly,

ruD(r, 0) = Z @aq P (ka) Ry D(rkq)

provided

B!
RN{®) = I[- Ng {Prsxz)(kapa) ) .prgxz)(kapa) + B (kapq) - R‘r?)(kapa) .&

(29)

11




b
‘l

+ na—l{Prg)(kapa-l) ) i’rgz)(kapa-l) + Br(nz)(kapa-l) : En(z)(kapa-l):?.

The resuits for (9u are analogous and the normalization factors are:

l-Nl(a) = [naclsll)(kapa)'c(nl)(kapa) + na-lCr(nl)(kapa-l)érgnl)(kapa-l) (30)

- - 1
LNp(@ = [nacrslz)(kapa)  CR(kapa) + Ngm | CP(KaPa-1)C (K aPon1 | 30
Thus, the form of the displacement field in any one of the zones V is given by

@ur,0)= T | Qa8 k) QU0 o)+ 932 (ko) QU &)

m,RKa

' ]
+ 1, | 905 (o) QUO(r, ko) + 98 (K QYO ka)| 17 Ve ()

m'Lkd

which is (merely) a sum of P-SV modes propagating in the forward and backward honzontal
directions, plus a similar sum of SH modes. Further, the displacement field in V 1s connected to
its values on the boundary surfaces X, and Z,., by the representations in (23), with the Greens
functions given by the eigenfunction expansions of (20) - (21) and with the normalizations
specified by (28) - (31). Use of these latter representations provide the means of determining the
coefficients @a P and @a® in (32), and thereby an explicit expression of the displacement
field in V4 in terms of the modes of this horizontally layered region. As will be shown. the

coefficients between all the zones Vg, a= 1,2, - - - | M, are linked by a propagator formalism.

Zonal Boundary Conditions, Projections and Lateral Propagators

Continuity conditions expressing conservation of momentum, mass and energy apply

throughout the medium, however complex the intrinsic matenal properties. In particular such

conditions apply along the control surfaces I, separating the zones of uniform lateral pioperties




in Figure 1. In the case of a solid medium, with welded contacts at all layer boundaries, the con-

tinuity condations along the surface X, are:

@y| |y
(@ | Fl@ht 1= 1,2.3 33)
Ma Ha

where the subscript o on the matrix brackets is used to indicate evaluation on the vertical boun-

dary I, between the zones V4 and Va4

The displacements and tractions 1n (33) can be expressed in terms of the eigenfunction
expansion of (32). However, since the P-SV and SH modes are decoupled in Vg and V4 4, then

(33) can also be expressed by the decoupled set of relations:

(?Q‘Vj(p)(Rka) (GH)RWJ(p)(RkaH) .
LT | 9afka QU P(rkq)| -Z I B ek @O Plakgar)] | = 2

Rka pm 1 m  gkKae; pwl
(34a)
- v
(@A wor el | = (D) A (P ok | 1=
Y sz:a ;.:, DA (Lkg) @ P (kg) . zm: Lél ‘g LAIP(iKaw1) @D P ikaq)| )=3
(34b)

where the expansions in P-SV and SH 110ves have been substituted for u, and t, on both sides of
(33). A similar set of boundary equations apply to the other vertical boundary of Vg, on the sur-
face Ly -, in Figure 1. (In this case the matrices are evaluated on L4 - ; SO the matrix indices in
(34) change to (o - 1) throughout, while on the right side of (34) all the eigenvalue and eigen-
function indices change from a+ 1)to (o= 1).)

We can extract expressions for individual mode coefficients (DA and DA, appropri-
ate to the zone V,,. in terms of the mode coefficients in the zone Vg4, | by taking integral inner

products ("projectons”) between the displacement and traction eigenfunctions on both sides of

13




DY L DA D 35 RV
L <P o> T | LY P, @R,

(34). Then we can use the (P-SV) orthogonality relations in (26) - (27), along with comparable
orthogonal relations for SH modes. Specifically, using inner product bracket notation as before
in equation (25) and taking the inner products between displacement and traction eigenfunctions

on both sides of (34), we have:

”
{

(35)

where indices R or L have been suppressed but are implied, with appropnate use depending on
whether j = 1, 2 or j = 3, as indicated by (34a) and (34b). (That 1s, this equation applies to either
(34a) or (34b)). For specificity, one uses P-SV eigenfunctions and eigenvalues and a subscript
"R" when considering component equations with ) = | 2 and uses SH eigenfunctions and eigen-
values with subscript "L" when considering the j = 3 component equation.) Here k{™ denotes the

specific n't eigenvalue of one particular mode with angular index m’.

Now we can subtract the upper matnx equation 1n (35) from the lower one and then make
use of the orthogonality relations for P-SV modes in {26) - (27), and the obvious simular pair for

the SH modes, to obtain:

@A) = e T ﬁl<°'+'>Aw(ka+.){<<“*”w,w>(ka+,) O Ok() >, =
s .t P

<(a+l)\yj(p)(ka+l) '(“)W,(S)(k&"))>a} s=1.2 (36)

where we have equated the sums over m, on each side of (35), term by term. This equation
again applies to either P-SV or SH modes; however, for P-SV modes | = 1, 2 and or SH modes.
then j = 3. Therefore in (36) the implied summation over the coordinate index 1s ver j = | and

2, for the P-SV case, and for SH modes only the one term. for wh ch j = 3. oc urs. The fiee
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index (s) denotes the forward and backward horizontally propagating modes, so that (36)
expresses a relationship for both mode types. The factor N{® is the normalization "constant"
appropnate for the different mode types. These factors are given in (28) - (29), for the forward

aind backward propagating P-SV modes, and in (30) - (31) for the SH modes.

It can be seen from (36) that a particular mode in Vg, at a particular eigenvalue (or wave
number), will be "excited" by all the forward and backward propagating modes in Vg4 in the
manner descr sed by the expression on the right side 1n (36). Thus, all the modes in Vg4, at all
wave number:, will contribute to the excitation of any one mode 1n V, (at a particular wave
number) in prc portion to the sum of the mode coefficients, (*DA§P)(kq,,), weighted by the inner
product factors given by the bracket term on the right side of (36). Thus the weight factors in

(36) will be called coupling coefficients.
Considering the kq,; eigenvalues as a discrete (infinite) set {k{},}, as was implied for k,
by the use ot k§™, then we can define the discrete coupling coefficients as
C l(:f'” (a+];0)m ﬁ;; [<(a+l)w’(p)(k&l D, (a)\p’(s)(k M> . - <(°'“)‘P,(P)(k&‘ll)) , (a"l’,(')(k M>.
37

and (36) becomes:

@q gy (k&"))=2," 3 i (ol o) @ha® k@) ;5 s=1,2 (38)
p=l

The coupling cocfficients can be expressed in more detail when the specific functional
forms of the eigenfunctions appearing in the inner products are used 1n (37). In this case we can
use the orthogonality of the vector cylindencal harmonics to reduce the coupling factors to sim-
ple integrals over the vertical (z) coordinate on the boundanes of each zone V,. Specifically,

from (37) for the P-SV case, using the eigenfunction expressions given earher in (13) - (14), one

15



has:

n -
RC{PD (ot ;)= N@ {<<G+I>Dl , @R > ~ <(+DR, <°°Dn>} Pk 1pa) PRKpa)

+ {<(°‘”)El (@8, > — (@b, <“>En>}8&>(k&l;pa)-Eﬁ)(k&%a)] (39)
J4

where ng = 2ntp,, With p, denoting the value of the radial coordinate on the surface L,. Further
the various inner products involve the "vertical eigenfunctions” defined in (13) ind (17); where

these inner products have explicit forms of the type:
<(athp, , (@R, D> » { @D (2o 5 nd1)PRi(2o : kiM)dz, (39a)

with similar expressions for the other products in (39). If these products are compared to those
in (26) and (27) - or more directly to the orthogonality relations involving the vertical eigenfunc-
tions given by the equations following equation (27) - it can be seen that the inner products in
(39) reduce to delta functions if the eigenfunctions in the zones V4 and V,,,; are the same; that
is, if @D = (@D, (@hR | = (@R etc. This, of course, is as it must be, since only when the
physical properties in the two zones are identical will the eigenfunctions be the same and 1t then
follows that the coupling matrix must be diagonal - that is that the boundary between the two
zones produces no (i0ss mode excitation and is transparent. We see, therefore, that e analyn-

cal expression in (39) for the couphng does indeed have this required property.

The normalization factor for C (P 1s the ratio xNg'@ / ng which can be redefined as k\'®,

where from the previous expressions for RNy(®), 1n (28) and (29), thus constant has the form:

gN,@ =

{P.&f)(k&Mpa)-T'é:’(k&Mpa) + B BR(kp,)
(40)

N

+ [—p;:’ ] {P.‘ﬁ’ (k§” pa-1) PR(kEIpq- ) + B,‘,,S)(k&"’pa..l)-E‘n"(k&“’pa.l);};
)]
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In an exactly analogous fashion the coupling coefficients for the SH modes are found to be:

n

Cif9 (atl o) = 45 [<<a*'>F,  @Ty> - <@Ty, <“>Fn>] CiPkhpa) CRkMpa)
3
41)
where the inner products are again of the simple form:
<la+f, QT > a l“"*”l’m(zo kN @OT (2o : k§Y) dze (41a)

Further, we can again define a new normalization factor {Ny(® & {Ny@ / n, which has the foim:

K @ = [cg><ka"’pa>-<‘;‘“=><kampa> + [Pa‘l] CHOKDPaut) TP PP aw) (42)
i a

The com cutations involved in determining these coefficients are straightforward, since the
cylinderical I 3rmonics are tabulated and tiie integrals over the vertical coordinate z, involve
simple integr: Is of exponentials that can be evaluated analytically, 1n closed form, for the gen-

eral case.

Since (3.}) constitutes a set of two equations for s = | and s = 2, corresponding to forward
and backward propagatng imodes and since the sums on the night can clearly be expressed as a

product of mairices, 1t is natural to write the results in matrix form. Therefore we define:

3

@a, (k)
@an (k)

{‘“’0,‘."} = . .fors =land2 (43a)

@, (k§d),

.

and a simifas column matnx of length (L) denoted [(**iig P11 where the anguiar index m has

been suppressed :n wnnng the mode excitation matnces. Further, we can define coupling

17




meirices by:

’

CPCy P Cy P
C 1oP9 CpfP9 C o)

[C,‘r’] =| j (43b)

C NP v Ot

for each s and p value, where s = 1,2 and p = 1,2. With these definitions one c: n write the sys-

tem of equations implied by (38) in the form:

(@a") |cHrucE) twa;‘”ﬂ
[(9a '?’) *lcy (ce) ((w)a,"’ ]J (34)

where the forward and backward propagating mode excitation coefficients are « isplayed expli-
citly. In defining the [C (] matrices. and in writing the matrix result in (44). the " indices”
have been suppressed. However, when confusion can arise they should be written as
[Ci® (o + | ; a)]. etc., since the o indices change wien the matrix refers to a boundary other
than I,. (eg. Between the zones V,.; and Vg, on the surface I,.;, the cot pling matnx is

expressed as [C,¢% (a; a~1))).

Obviously the coupling matrices are square only if L = N, that 1s if we use as many modes
in Vg as in Vg, to represent the propagating waves. This choice will be adhe: :d to, from this

point forward, although it is not a necessary condition.

It is evident that the patitioned matrices can te written in unpartitione ! form as well,
where, with L = N, the mode coefficient matnces are of 4 aension (2N x 1) and the coupling
matrix is square and of dimension (2N x 2N). Thus, we can also define mode coefficient
matrices consisting of the (ordered) mode coefficients for the forward and backward propagating

modes in the zones Vg and Vg, as (say):

18



)
a [(wa,’]
[(a)m n] = [(")022)]

(45a)

(e+ng V]

.

and, similarly, we can define what can appropnately be called a horizontal propagator matrix:

. lcso] fego

[H (o ;a)J = (45b)

lcu2] g2

Now the equation (44) can be wnitten in the more compact form:
[(a)m n} = [H (o] (1)] [(ml)m |] (46)

and expresses the required conditions between the mode coefficients in neighboring zones.

If we take successive values of a, with & ranging from | to M-! say, then we get
[(Dmg) = [H (2 D}I{®m))
(@m )= [H (3 DI¥m))
(M=bm,) = [H (M ; M=1))[(Mm))

Clearly, by notin: in these equations that the indices | and n are just dummy indices providing a

numbenng syster: for the eigenvalues, then
r r r
lf“m,,} = {Hm(z ; l)] le(3 ; 2)] e {HM(M ; M-l)] [(M)m,]

by successive substtunions. Consequently. we can write, forany 2 a + I
]

e 11 &
;h(a)'nnj =4 ﬁ,“’!a(‘h‘l"”}} {(p)'nl] (47)

Lq-a-r -
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This is a propagator equation that connects the mode coefficients in any zone Vg with those in
any other zone V4. Incase B = + | the equation (47) reduces to equation (46), which connects

the coefficients in any two neighboring zones. Since the coupling coefficients composing !Hm;
L -

can be computed from the simple eigenfunction inner products at the zone interfaces, this equa-
tion provides the means of computing mode coefficients that produce displacements and trac-
tions satisfying all the boundary conditions along the vertical bcundaries of the medium. Since
the eigenfunctions used already satisfy the boundary conditions ilong the horizontal boundares
in each zone, then by use of the horizontal propagator relation all the boundary conditions in the

laterally and vertically "layered" medium being considered can be sansfied.

Summary and Conclusions

The basic method described here makes use of normal mode expansions of the wave field
in each partitioned sub-region of the medium within which the medium 1s umiform 1n the lateral
directions. Thus the medium is partitioned into laterally umform zones and complete normal
mode solutions are obtained fro each honizontally layered zone. ln the analytical development
the "zonal eigenvalues and eigenfunctions” are generated by treating each zone as a layered half
space or radially layered sphere, as ia appropniate for th : medium geometry. The resulting set of
modes are then used as bases for expansions of the wave fields in the layered subregions. The
mode expansions defined on the zones are then "connected” by matching (equauing) the exact
Green's function representations of the wave fields in each zone at the common boundanes
between the zones where continuity of displacement and tracnon 1s required. This results 1n the
defiition of a “lateral propagator” of the wave field when applied to all the zones mak'ng up the

entire medium and 1s, in application, very similar to the classical “"verucal propagator method.

20



The method is exact when the lateral varations are actually discontinuous step changes in pro-
perties. When the actual changes can be approximated as a sequence of step the method should

be supenor in computational accuracy and speed to numerical methods.

In implementations of this method it is only necessary to compute the “zonal" normal
modes once, and subsequently these zonal mode solutions can be combined in a variety of ways,
using the lateral propagator equation, to produce theoretically predicted wave fields in many dif-
ferent laterally varying structures wintout the necessity of a complete recomputation ot wave
fields in each new structure. Further, the propagators are analytically defined so that manipula-
tions related to inversion and perturbation calculations can be considered. For these reasons, and
because of its inherent hugh accuracy, this method should prove useful in modeling seismic wave’
fields in complex media and in inversion studies. In the present study the method is developed
in detail for two dimensionally vanable media, using cylindrical coordinates and wave functions.
However, analogous results in rectangular and sphencal coordinates may be obtained using the

same procudure and are appropnate for media with variability 1n all three spatial dimensions.
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